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A Discrete Ordinates Algorithm for
Radiation Transport Using

Block-Structured Adaptive Mesh Refinement (U)

L. H. Howell∗

∗Lawrence Livermore National Laboratory

The discrete ordinates method is well-suited to implementation with
block-structured adaptive mesh refinement (AMR). AMR meshes group
points into logically-rectangular patches, and provide the benefits of
adaptivity without sacrificing the efficiency and geometric regularity of
regular grids. In particular, these meshes preserve the directional ordering
of points required for explicit ordinate transport sweeps. A number of
algorithmic issues must be addressed to make such a method practical.
These include sequencing of ordinates and grids for parallel execution,
simultaneous solution of the transport equation on multiple levels of the
grid hierarchy, implicit coupling to the fluid energy, and conservation of
energy in a time-dependent context where different grid levels advance
with different timesteps. I discuss these and other issues and present
example calculations in two and three spatial dimensions. (U)

Introduction
In previous work (Howell and Greenough, 1999 and 2003) I have described the

addition of gray radiation diffusion to an algorithm for multifluid Eulerian gasdynamics
with adaptive mesh refinement. The scheme has its roots in the block-structured AMR
algorithms developed for hyperbolic systems by Berger and Oliger (1984) and extended
by Berger and Colella (1989) and by Bell et al. (1994). The implicit treatment of the
parabolic diffusion equation is based on algorithms developed for the incompressible
Navier-Stokes equations in (Howell and Bell, 1997) and (Almgren et al., 1998). Other
examples of implicit processes coupled to explicit advection in AMR codes include
self-gravitation in astrophysics (Truelove et al., 1997), and discrete ordinates for radiation
in combustion applications (Howell et al., 1999).

The present work replaces the radiation diffusion equation with a discrete ordinates
approximation to gray radiative transport. I will briefly present the implicit coupling
between the radiation field and the fluid energy, showing that this introduces an effect
resembling isotropic scattering, even when true scattering is absent. Having reduced the
time-dependent problem to solution of the steady-state discretized transport equations, I
will discuss the solution of these equations by parallel transport sweeps both on single
refinement levels and on multiple levels of the adaptive mesh hierarchy. The final section%'&)(+*-,.,0/�1324%52 6
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concerns convergence acceleration by conjugate gradient and a discussion of
preconditioners.

AMR Essentials
A complete description of the AMR timestepping scheme can be found in many of the

references cited in the previous section, so for this paper I will give only a very brief
overview. The computational mesh consists of a hierarchy of refinement levels, each of
which is locally uniform and organized as a union of rectangular patches. Cells on
different levels are aligned, and refinement ratios between levels are typically 2 or 4.
Edges of different levels may not be coincident except at the physical boundary—that is,
level `+ 2 may not directly border level ` without an intervening region at refinement
level `+ 1. For computational convenience coarse cells are defined under finer grids, but
the finest solution in a given region takes precedence over coarser versions.

The scheme typically refines in time as well as space, both for efficiency and to help
maintain an optimal Courant condition on all levels for the explicit hydrodynamics. The
refinement ratios in time are the same as those in space—these are specified by the user
along with the specific criteria for refinement. Timestepping is a recursive process, where
a level ` is advanced first without reference to any finer levels, then level `+ 1 is advanced
a number of times to catch up (this in turn requires advancing levels `+ 2 and higher).
After the finer levels have reached the time corresponding to the end of the coarse
timestep, synchronization operations must be performed to correct any flux mismatches
that have occurred at the coarse-fine interface. Effects—including radiation—which are
implicitly timestepped also require use of an implicit solver in the synchronization
process.

Library support for this adaptive computational model, including parallel support
through use of the grid layout on each refinement level for spatial domain decomposition,
is provided by the BoxLib class library (Rendleman et al., 2000).

Fig. 1 shows the results of a simple time-dependent radiation calculation using AMR,
and also illustrates the differences between diffusion and transport. This is a pure
absorption problem set in the unit square and featuring two different fluids: an optically
thin (κ = 1) background and an optically thick (κ = 100) material localized in a circular
absorbing region and in a layer along the right wall. A hot spot in the thin material
radiates energy, which is then absorbed weakly by the thin material and strongly by the
thick material. Finer grids are placed around the hot spot and the circular absorbing
region. Fluid energy is shown after 10 coarse (and 20 fine) timesteps. All three
calculations conserve energy at the coarse-fine interfaces by using multilevel
synchronization at the end of each coarse timestep, but nonreflecting boundary conditions
allow energy to exit via the edges of the domain. The diffusion calculation uses the flux
limiter presented in (Levermore and Pomraning, 1981). The transport calculations use the
step characteristic discretization (Mathews, 1999).

The diffusion calculation produces a smooth solution that clearly shows one of the key
weaknesses of diffusion in an optically thin medium. Energy is absorbed on the back side%'&)(+*-,.,0/�1324%52 �
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Flux-limited Diffusion

S16 (144 ordinates)

144 equally-spaced ordinates

Fig. 1. Diffusion contrasted with discrete ordinates, with mesh refinement. Fluid energy is
shown (overexposed to bring out detail).

%'&)(+*-,.,0/�1324%52 �
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of the circular cloud as well as the front, and no shadow is cast on the right wall. (Without
the limiter the result is even worse—energy is spread through the thin region in a much
more uniform manner (not shown in figure). The limiter at least allows for a more
physically-reasonable decline in intensity with distance from the source.)

The transport solutions differ only in the choice of ordinate set (angular
discretization), and both use 144 ordinates in 2D. The standard S16 set distributes
ordinates in a roughly uniform manner throughout a hemisphere. Effort expended in
discretizing the vertical direction (out of the plane) results in relatively poor resolution in
the 2D plane of the calculation. As a result, ray effects are very obtrusive, causing false
“shadows” as noticeable as the true shadow cast by the circular cloud. The final picture
shows the results with a different ordinate set suggested to me by Britton Chang. All
ordinates have the same direction cosine (0.577350269) with respect to the vertical axis,
and are arranged uniformly with respect to the plane of the calculation. The first three
moments of this distribution are correct, ray effects are minimized, and a clear shadow is
cast by the circular cloud.

Equations for Radiation and Fluid Energy
Timestepping uses a split formulation where advection of all fluid state components

takes place first, followed by conduction, and finally by the radiation transport step. The
first two of these operations have been described in previous work, so I will summarize
them as follows without further discussion:

(ρE)− = (ρE)n + ∆t
{

− [∇ · (uρE + up)]n+1/2 +
1

2
∇ ·

(

κ0T
5/2∇T

)n+1/2
}

. [1]

For the transport step I use the time-dependent, gray radiation transport equation with
a fully-implicit time discretization. Though scattering may or may not be physically
present, I include isotropic scattering in the equation to show the relationship between
“true” scattering and a scattering-like term that arises from implicit coupling of radiation
with the fluid energy (next section).

In+1 − In

c∆t
+ (Ω · ∇)In+1 +

(

κn+1
a + κn+1

s

)

In+1 = κn+1
a Bn+1 + κn+1

s φn+1, [2]

φn+1 =
1

4π

∫

4π
In+1dΩ, [3]

(ρE)n+1 = (ρE)− − ∆t · 4πκn+1
a

(

Bn+1 − φn+1
)

. [4]

In the actual code a multifluid formulation is used, with volume, mass, and energy
fractions stored separately for each material present in a cell. Quantities derived from the
fluid state, such as emission and absorption coefficients, are likewise computed separately
for each material, but for radiation quantities only a single value is used for each cell.
There is thus a single radiation equation, but a separate fluid energy equation for each
material, as follows:

In+1 − In

c∆t
+ (Ω · ∇)In+1 =

∑

α

fακα,n+1
a

(

Bα,n+1 − In+1
)

+ κn+1
s (φn+1 − In+1), [5]

%'&)(+*-,.,0/�1324%52 �
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(fαραEα)n+1 = (fαραEα)− − ∆t · 4πfακα,n+1

a

(

Bα,n+1 − φn+1
)

. [6]

Quantities with α superscript are computed separately for each fluid. This form should be
assumed throughout the remainder of the paper, though I will not need to write it out
explicitly again.

Returning to the single-fluid form, the discrete ordinate method is a discretization of
the angular dependence of I over a number of discrete directions (ordinates) Ωm.
Equations (2) and (3) thus become

In+1
m − In

m

c∆t
+ (Ωm · ∇)In+1

m +
(

κn+1
a + κn+1

s

)

In+1
m = κn+1

a Bn+1 + κn+1
s φn+1, [7]

φn+1 =
1

4π

∑

m

wmI
n+1
m . [8]

An ordinate set is specified by the choices of ordinates Ωm and weights wm. Many
different choices are possible, two of which are contrasted in the numerical example in the
previous section. In Cartesian coordinates each Im couples to other ordinate directions
only through the boundary conditions and the scattering source. (More complex coupling
appears in other coordinate systems. For a general introduction to this and other discrete
ordinate concepts, see (Lewis and Miller, 1993)).

Solvers for (Eq. 7 and 8) are built using transport sweeps. For each ordinate m,
computation begins at the “upstream” edges of the domain and proceeds “downstream” in
the direction Ωm. Various spatial discretizations are possible. The current code supports
the basic step and diamond difference iterations, along with simple and upstream corner
balance methods (SCB and UCB) (Adams, 1997), and step characteristic (SC) (Mathews,
1999). Given correct upstream boundary information and scattering source φ, values for
Im are obtained in a single sweep across the domain. The simplest solution algorithm,
source iteration, consists of repeated transport sweeps with the sources recomputed after
each sweep. Acceleration techniques can be applied to improve the convergence rate of
this iteration, as I discuss later in the paper.

AMR Time Step
Finer levels of the adaptive mesh hierarchy are advanced using smaller timesteps than

coarser levels. The timestepping algorithm used for the current code is very similar to
those presented for discrete ordinates in (Howell et al., 1999), and for radiation diffusion
in (Howell and Greenough, 1999) and (Howell and Greenough, 2003). Because of these
similarities, I will not present the details of the scheme here but will instead give only a
brief summary.

The algorithm is fundamentally recursive. A level first advances itself without
reference to finer levels, then has the next finer level advance—using interpolated
boundary conditions as needed—with finer timesteps, then performs synchronization
operations to ensure conservation for fluxes crossing the interface to the next finer level,
and finally returns control to the next coarser level.
%'&)(+*-,.,0/�1324%52 �
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The first of these steps, the single-level advance, is further broken down through the

splitting procedure outlined in the previous section. Advection and conduction take place
first, followed by radiation. The radiation step involves the solution of the discrete
ordinate discretization of the transport equation (Eq. 7 and 8), coupled to the fluid energy
through (Eq. 4). Close nonlinear coupling between the radiation and the fluid when κa is
large requires an iterative, implicit solution technique.

As in the diffusion algorithm presented in (Howell and Greenough, 2003), the
derivation starts by extrapolating the emission term to the new time (n+ 1) temperature.
(A star (∗) superscript designates a previous approximation to time n+ 1 quantities.)

κn+1
a Bn+1 = κ∗aB

∗ +
1

cv
(en+1 − e∗)

∂(κaB)

∂T
. [9]

Substitution of this linearization into the radiation and fluid energy equations then yields
the following form for the update iteration:

In+1 − In

c∆t
+ (Ω · ∇)In+1 + (κ∗a + κ∗s) I

n+1 =

(κ∗s + η∗κ∗a)φ
n+1 + (1 − η∗)κ∗aB

∗ −
η∗

4π∆t

(

(ρE)∗ − (ρE)−
)

, [10]

(ρE)n+1 = η∗(ρE)∗ + (1 − η∗)
{

(ρE)− − ∆t · 4πκ∗a
(

B∗ − φn+1
)}

, [11]

where

η∗ =

∂(κaB)

∂T

∗

ρn+1cv
4π∆t

+
∂(κaB)

∂T

∗
. [12]

The key modification to the radiation equation (Eq. 10) is the the addition of a term
that behaves like isotropic scattering, even when no true scattering is present. The other
changes only alter coefficients. It is convenient then to gather terms of (Eq. 10) as follows,
in order to obtain a simplified form for the derivation of acceleration schemes and the
design of solver software.

(Ωm · ∇)Im + σtIm =
1

4π
σs

∑

m′

wm′Im′ + Sm, [13]

where

σt = κ∗a + κ∗s +
1

c∆t
[14]

σs = κ∗s + η∗κ∗a [15]

Sm =
1

c∆t
In
m + (1 − η∗)κ∗aB

∗ −
η∗

4π∆t

(

(ρE)∗ − (ρE)−
)

. [16]
%'&)(+*-,.,0/�1324%52 �
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While the level advance operations require no communication with other levels

beyond the use of interpolated boundary conditions, the synchronization operations match
fluxes passing across coarse-fine interfaces in both directions and therefore require the
participation of at least two levels at once. The solver I use for this is based on the one
presented in (Jessee et al., 1998), with two significant differences. First, in the current
version the interface sources are explicitly located at the appropriate cell edges rather than
at the centers of coarse cells adjacent to the interface. Second, the current version is
implemented in parallel, with communication operations built up from BoxLib primitives.
(Parallel communication between levels is necessary only at the coarse-fine interface,
while parallel communication within each individual level is discussed in more detail in
the next section.)

The form of the AMR timestep itself—which determines the source function for the
multilevel synchronization operations—most closely resembles that given in (Howell and
Greenough, 1999) for radiation diffusion. The version of the timestep algorithm presented
for discrete ordinates in (Howell et al., 1999), and for radiation diffusion in (Howell and
Greenough, 2003) is more complicated, including the option of an additional multilevel
solve at the beginning of each coarse timestep. This extra solve provides additional
accuracy in cases where essential features of the global solution are not adequately
reproduced on coarse level grids. I have not yet added this option to the current discrete
ordinates code, but all of the necessary software capabilities are available to do so if it
should be needed.

Parallel Transport Sweeps
The AMR timestep algorithm requires solutions to the transport equation both on

single levels and on multiple levels at a time. The former can be solved by source
iteration—that is, by repeated transport sweeps. The latter, as mentioned in the previous
section, can be solved by a more complicated iteration that also breaks down into
single-level transport sweeps (Jessee et al., 1998).

In problems with significant scattering the source iteration may converge too slowly to
be practical, and so in the next section I discuss acceleration techniques. Even with
acceleration, though, transport sweeps remain the fundamental unit of the calculation, and
the only part that is not directly parallelized by the BoxLib software framework. It is
therefore appropriate to specify the parallelization techniques used, both for single and for
multiple level problems.

Parallelization in BoxLib (Rendleman et al., 2000) is through spatial distribution of
each level across the entire processor set. Grids are distributed whole—there is no
provision for two or more processors to operate on the same grid. The grid generation
parameters must therefore be chosen to ensure that there are enough grids on each level to
keep all the processors busy. (Reasonable load balancing is obtained with three or more
grids per processor.) This criterion favors large numbers of small grids, as does the issue
of cache efficiency. On the other hand, the overheads associated with the adaptive grid
layout, coarse-fine interfaces, and interprocessor communication favor smaller numbers of
%'&)(+*-,.,0/�1324%52 �
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large grids. I mention this here to point out that there is a tradeoff, but I will not explore
the issue further in this paper. For this section it is sufficient to remember that each grid, its
neighbors, and the coarser and finer grids it overlaps, may all be on different processors,
and it is not too misleading to use the word “grid” as a euphemism for “processor”.

The reason parallelization is not adequately provided by standard BoxLib primitives is
that transport sweeps proceed across the domain following the direction of each ordinate.
Grids farther “downstream” require boundary data from their upstream neighbors. These
dependencies interfere with the natural parallelism of each grid doing the same thing at
the same time.

The solution I’m working with is to have different grids working on different ordinates
at the same time. At the first stage of the calculation, only grids that are farthest upstream
with respect to some ordinate are active. At later stages boundary information becomes
available for grids farther downstream, and the calculation moves inward from the corners
of the domain. Figure 2 shows the situation for an 8 × 8 square arrangement of grids.

Even with a simple square grid layout, the situation becomes complicated when grids
must decide which of several competing ordinates to work on next. To organize the
calculation, consider first the progress of a single ordinate through the domain. The grid
or grids furthest upstream, that depend on no other grids for boundary data, constitute the
first “wave” for that ordinate. The grids which can sweep after the first wave is done are
the second wave, and so on. (In Fig. 2 the waves are those groups of grids with exactly the
same color.) The number of waves required to cross the domain can be considered the
width of the domain, and this width plus the number of remaining ordinates in the same
quadrant provides a lower bound on the number of stages required to complete the entire
transport sweep for the entire ordinate set.

The complete steps into which the computation is broken are what I am calling
“stages”. During each stage, each ordinate will be swept through all the grids in its next
wave, unless some of those grids are taken by an ordinate given higher priority. The
current implementation treats this as an all-or-nothing proposition: no grid will sweep an
ordinate unless all grids of the same wave are able to do so. (There may be some
advantage, though possibly a small one, to allowing some grids to sweep ahead of the rest
of their wave, and this may be explored in future implementations. Compare, for example,
the demand-driven approach presented by Dorr and Still (1996).)

A different issue is the question of which ordinates should be given higher priority
when conflicts are encountered. In Fig. 2 the four quadrants receive equal amounts of
work in the early stages, conflicts occur in the middle, but by late stages they are seen to
be finishing roughly in step with each other. This is a desirable outcome. If the algorithm
consistently favors ordinates in some quadrants over others in resolving conflicts, then
those quadrants tend to finish first, and extra stages will be required to complete the
sweeps for those ordinates in the “losing” quadrant or quadrants.

Table 1 gives the numbers of stages required for various sizes of ordinate sets and
various grid arrays, with different algorithms for resolving conflicts. The runs with
different conflict-resolution priorities at different stages gave consistently superior results.%'&)(+*-,.,0/�1324%52 �



�������������
	���
���������������������  "!#!$ 

Stage 3 Stage 11

Stage 21 Stage 34

Stage 52 Stage 54

Fig. 2. An 8 × 8 square of grids required 58 Stages for 40 Ordinates (S8). Color indicates
the ordinate being processed by each grid, with idle grids shown as dark blue.

%'&)(+*-,.,0/�1324%52 �
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Note that the number of ordinates is a lower bound for the number of stages, and the “no
overlap” column provides an easy upper bound that an optimal scheme should usually be
able to improve upon.

Fig 3 shows the more complicated—and typical—case of a mesh level with an
irregular grid layout due to adaptive mesh refinement. The collection of 43 grids has a
width of 20 waves in each direction. 66 stages were required to sweep 40 ordinates
through the grids on the refined level. Each stage therefore had roughly 40% of grids idle
on the average, so there seems to be room for improvement. A larger S16 ordinate set
required 178 stages to sweep 144 ordinates through these same grids, giving only 20%
idleness. The same general rule applies to adaptive grid layouts as to the regular grid
patterns of table 1: larger ordinate sets yield longer pipelines and more efficient use of any
given set of grids.

Another difficulty arises in three dimensional problems. There are grid layouts in 3D
that cannot be ordered—that is, there may be a grid A which must be swept before grid B,

Table 1. Number of stages required for transport sweeps in a variety of problem sizes.

# of no fixed with
sizea ordinates widthb overlapc orderd rotationsd

2 × 2 S4 12 3 20 16 12
2 × 2 S6 24 3 32 29 24
2 × 2 S8 40 3 48 45 40
2 × 2 S12 84 3 92 89 84
2 × 2 S16 144 3 152 149 144
4 × 4 S4 12 7 36 23 17
4 × 4 S6 24 7 48 37 31
4 × 4 S8 40 7 64 55 47
4 × 4 S12 84 7 108 99 91
4 × 4 S16 144 7 168 159 151
8 × 8 S4 12 15 68 35 27
8 × 8 S6 24 15 80 51 42
8 × 8 S8 40 15 96 71 58
8 × 8 S12 84 15 140 119 102
8 × 8 S16 144 15 200 179 162

aSize of a square array of grids and the ordinate set used.
bThe number of stages required to sweep a single ordinate.
cThe number of stages if all ordinates in each quadrant are swept in pipeline fashion, but
without overlap with other quadrants (this is 4 × (n/4 + width− 1) for n ordinates).
dThe last two columns give the number of stages for the methods discussed in the text—
always giving priority to the same quadrants in resolving conflicts, or rotating priority with
each stage.

%'&)(+*-,.,0/�1324%52 6��
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B before C, and C before A. These situations can always be resolved by splitting one or
more grids and doing the pieces in two different stages, but the determination of
appropriate splittings adds still more complication to the sweeping algorithm. This
splitting feature is not yet fully implemented in the code.

So far in this discussion I have been motivated by the needs of a parallel
implementation, but I have not yet shown any runs actually performed on a parallel

Stage 4 Stage 15

Stage 34 Stage 62

Fig. 3. For 43 AMR grids on a level, 66 stages are required to sweep an S8 set containing
40 ordinates. Different colors show which ordinates are active on which grids, dark blue
shows inactive grids, while light blue shows the region not refined at this level.

%'&)(+*-,.,0/�1324%52 6 6



�������������
	���
���������������������  "!#!$ 
machine. I do not have a scaling study to present, but I can at least offer the sample results
shown in Fig. 4. This figure examines the grid size tradeoff mentioned above, and shows
efficiency improving as grids in an otherwise fixed arrangement become larger. The
results suggest that—at least in this preliminary implementation of the algorithm—grid
size must be at least 64 × 64 to keep overheads from dominating the calculation.

Conjugate Gradient Acceleration
In source iteration, three separate quantities are recomputed after every transport

sweep. Reflecting boundaries and the AMR refluxing source converge rapidly with
successive sweeps, but the scattering source may converge very slowly. Only this source
requires convergence acceleration. So long as the scattering is isotropic the problem can
be expressed as a symmetric positive definite linear system, so conjugate gradient (CG)
acceleration is straightforward. Each step of the CG iteration involves solving, by
transport sweeps, a reduced problem with the scattering source held constant while the
reflection and AMR sources are iterated to convergence. A version of this algorithm
without reflecting boundaries, AMR, or preconditioning appeared in (Ramone, et al.,

0 50 100 150
Grid Size

0
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0.3

0.4

0.5

S
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l

Fig. 4. Timings taken on ASCI Blue Pacific: 4 processors (black), 8 (red), 16 (green), 32
(blue). All runs used the same grid layout, with 64 coarse and 6 fine grids, all grids square
with side length shown as the x-axis in the plot above. Times are CPU seconds per cell for
initialization plus 10 coarse timesteps of a pure radiation problem using an S8 ordinate set
and step characteristic discretization (that is, 10 nonlinear implicit updates on the coarse
level, 20 on the fine level, 1 multilevel initialization, and 10 multilevel synchronizations).
All of these were iterated to convergence using transport sweeps.
%'&)(+*-,.,0/�1324%52 6 �
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1997).

We first form a correction equation. The original equation may have inhomogeneous
boundary conditions, AMR (sync) sources, and an anisotropic source Sm. The correction
equation has only an isotropic source. Let Iold

m be the starting point for the iteration—in a
time-dependent problem, for example, this may be the solution at the previous timestep.
We solve by sweeps for a quantity Inew

m , holding φold fixed:

(Ωm · ∇)Inew
m + σtI

new
m = σsφ

old + Sm, φ =
1

4π

∑

m

wmIm. [17]

Inew
m is not the true solution we are looking for, since it is computed using the wrong

scattering source. It does allow us, though, to form the isotropic correction equation (with
homogeneous boundary conditions) for a quantity I corr

m as follows:

(Ωm · ∇)Icorr
m + σtI

corr
m = σsφ

corr + σs(φ
new − φold). [18]

Summing (Eq. 17 and 18) confirms that we can then apply this correction to obtain the
true φ (and thus I):

φ = φnew + φcorr. [19]

It is the correction equation (Eq. 18) that we will solve by conjugate gradient.

We next express the problem in matrix form. Let Ax be defined and computed by
solving, through transport sweeps, the equation

(Ωm · ∇)ψm + σtψm = σsx, [20]

with homogeneous boundary conditions, and then constructing

Ax = x−
1

4π

∑

m

wmψm. [21]

The equation we want to solve is

Ax = φnew − φold, [22]

so that φ = φold + x. A is positive definite, and symmetric with an inner product

〈u, v〉 =
∑

cells

σsiuivi∆xi∆yi. [23]

(Note that, in AMR problems, coarse cells under fine levels are not included in this inner
product.)

Solution of (Eq. 22) is by preconditioned conjugate gradient, which I reproduce here
in a form based on that presented by Golub and Van Loan (1983), where M is the
preconditioner:
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αk = 〈zk−1, rk−1〉/〈pk, Apk〉
xk = xk−1 + αkpk x0 = 0
rk = rk−1 − αkApk r0 = φnew − φold

zk = M−1rk z0 = M−1r0
βk+1 = 〈zk, rk〉/〈zk−1, rk−1〉
pk+1 = zk + βk+1pk p1 = z0

I have experimented with two preconditioners for transport problems so far. A
diagonal preconditioner of the form

M = diag
(

1 −
σs∆x

1 + σt∆x

)

[24]

adds little cost to the calculation and typically reduces the number of iterations by a factor
of two. When the ordinate set is large, solution of a smaller (S2) system by diagonally
preconditioned CG makes an effective preconditioner for the larger system. Note that
while Apk must be computed accurately to avoid spoiling the residual update,
zk = M−1rk can be computed to a much looser tolerance. I will explore the performance
of these preconditioners in experiments in the next section.

Numerical Results
For numerical tests I use essentially the same 2D steady-state test problem here for

discrete ordinates as I used for diffusion in (Howell and Greenough, 2003). In the
diffusion problem sunlight (represented as an isotropic incoming flux of
400000 erg/cm2/s) enters through the top of a square domain 1 km on a side by way of a
Marshak boundary condition. This flux encounters a horizontal cloud layer across the
middle of the square, where the gaps between clouds may not be resolved on coarse grids.
Side boundaries are reflecting (Neumann), and the bottom is an absorbing (Marshak)
boundary. There is no coupling with the fluid (κa = 0), so energy that does not make it
through the cloud layer to the ground passes back out through the top of the domain.

To reproduce the same effects in a transport calculation, I use an isotropic incoming
flux through the top of the domain and specular reflection at the side boundaries. The
“clouds” are pure scattering regions, with κs = 10−2 cm−1 within “clouds” and
10−6 cm−1 elsewhere. Each cloud is circular, gaps between the clouds are 1/10 of a cloud
diameter, and there are 8.5 clouds across the width of the domain. If refinement is used,
only cells near the cloud layer are refined. Fig. 5 shows radiation energy density in a
well-resolved AMR calculation of this test problem.

The purpose of the test problem for diffusion was to examine the behavior of the AMR
algorithm in a case where a coarse-level feature of the solution (flux through the bottom of
the domain) depended strongly on the resolution in a refined region (the cloud layer). This
is also an interesting question for transport. In addition, since this is a strongly-scattering
problem we can also observe the performance of the acceleration techniques discussed in
the previous section.%'&)(+*-,.,0/�1324%52 6 �
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Tables 2 and 3 show the average flux reaching the bottom of the domain for various

grid resolutions (single grid and AMR) and ordinate sets, and for two different spatial
discretizations. The S2 runs used diagonally-preconditioned conjugate gradient, while
larger ordinate sets used the S2 solver as a preconditioner. Note first that for each
discretization and ordinate set, the computed fluxes appear to be converging as the fine
grid resolution is improved. These fluxes are nearly independent of the resolution in
coarser regions, because in these regions the solution is relatively smooth. The timings for
the larger AMR calculations are significantly better than for fully-refined problems with
equivalent fine resolution. Together, these facts suggest that AMR is successfully
delivering a performance improvement without damaging the computed solutions.

Is is also interesting to observe that the S2 solutions consistently underestimate the
flux penetrating the cloud layer. This is due in part to the fact that none of the rays in the

Fig. 5. “Clouds” AMR test problem (described in the text). Base grid is 32 × 32 with
two levels of refinement, each by a factor of 4. The calculation used 40 equally-spaced
ordinates and the simple corner balance discretization.
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S2 ordinate set can pass through a gap without hitting one of the clouds on either side.
Comparing the two discretizations, we see that at coarse resolutions the step characteristic
scheme overestimates the flux passing through the layer, while simple corner balance
gives more consistent results. This effect is not related to the gaps at all—it persists even
if the “clouds” are replaced by a uniform horizontal layer. Step characteristic can give
excellent results for propagation through thin media (see Fig. 1), but for transport through
thick scattering media it is at a disadvantage.

The fluxes shown in Tables 2 and 3 can be directly compared to those reported for
diffusion in (Howell and Greenough, 2003). Diffusion greatly overestimates the flux
passing through the cloud layer, even when a flux limiter is used. The timings, though, are
not comparable, since different machines were used and different parts of the algorithm
were being timed. The diffusion paper also went on to explore time-dependent effects,
which I don’t have the space to address here.

Finally, Table 4 gives performance data for the various acceleration options discussed
in the previous section. It seems clear that conjugate gradient is a great improvement over
source iteration, that the diagonal preconditioner is better than none at all, and that using
S2 as a preconditioner can significantly accelerate solutions for larger ordinate sets. The
spatial discretizations shown in the table all give reasonable results with conjugate
gradient acceleration. One discretization that I have implemented but not shown here,
upstream corner balance (UCB), works with source iteration but becomes unstable with
acceleration. Further investigation will be needed to correct this problem. Note also the

Table 2. Step characteristic (SC) results for “clouds” test problem.

S2 S8 Equal-spaced
Total 4 ordinates 40 ordinates 40 ordinates

Resolutionsa Cellsb Fluxc Timed Fluxc Timed Fluxc Timed

32 1024 79822 0.133 81872 0.800 82013 1.517
64 4096 55012 0.367 56897 2.350 57061 4.100
128 16384 38177 1.450 42445 9.817 43069 16.03
32,128 7168 38193 1.316 42446 8.733 43069 14.12
256 65536 28297 8.217 34675 56.15 35395 81.42
64,256 20480 28313 4.767 34678 31.33 35396 43.57
512 262144 23300 53.23 31403 339.0 31975 483.7
128,512 57344 23312 17.62 31408 121.0 31977 164.4
32,128,512 48128 23333 17.63 31410 127.8 31977 189.9
1024 1048576 21106 284.8
256,1024 212992 21113 90.48 30398 629.7 30883 760.4
64,256,1024 167936 21132 82.47 30402 596.5 30884 733.3
aNumber of cells across domain at each level of refinement.
bTotal number of cells on all levels.
cFlux reaching the bottom of the domain in erg/cm2/s.
dTime for a multilevel solve on a single 1 GHz Alpha EV6.8 processor.
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preliminary 3D results at the bottom of the table.

All of the timings in this section have been for a single processor, since running the
code in parallel introduces additional complications. One issue is raised by the S2

preconditioner: while in serial calculations this acceleration scheme improves
performance, the S2 ordinate set gives poor parallel sweep efficiencies because of the
shorter pipelines (see Table 1). Comparison of acceleration strategies in parallel
calculations will be an important subject for future work.
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